

JEE I NEET I Foundation

MOTIOON JEE MAIN 2021

SECTION - A

1. Ellingham diagram is a graphical representation of:
(1) $\Delta \mathrm{G}$ vs T
(2) ($\Delta \mathrm{G}-\mathrm{T} \Delta \mathrm{S}$) vs T
(3) $\Delta \mathrm{H}$ vs T
(4) $\Delta \mathrm{G}$ vs P

Sol. (1)
Ellingham diagram tells us about the spontanity of a reaction with temperature.
2. Which of the following equation depicts the oxidizing nature of $\mathrm{H}_{2} \mathrm{O}_{2}$?
(1) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
(2) $\mathrm{KIO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KIO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(3) $2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Sol. (3)

$2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Oxygen reduces from -1 to -2
So, its reduction will takes place. Hence it will behave as oxidising agent or it shows oxidising nature.
While in other option it change from (-1) to 0 .
3. In Freundlich adsorption isotherm at moderate pressure, the extent of adsorption $\left(\frac{x}{m}\right)$ is directly proportional to P^{x}. The value of x is:
(1) ∞
(2) 1
(3) zero
(4) $\frac{1}{n}$

Sol. (4)
$\frac{x}{m}=p^{x}$
the formula is $\frac{x}{m}=p^{1 / n}$
Hence $x=\frac{1}{n}$
The value of ' n ' is any natural number.
4. According to molecular orbital theory, the species among the following that does not exist is:
(1) He_{2}^{-}
(2) $\mathrm{He}_{2}{ }^{+}$
(3) $\mathrm{O}_{2}{ }^{2-}$
(4) Be_{2}

Sol. (4)

B.O. of Be_{2} is zero, So it does not exist.
5. Identify A in the given chemical reaction.

(1)

(2)

(3)

(4)

Sol. (4)

Aromatization reaction or hydroforming reaction.
6. Given below are two statements:

Statement-I : CeO_{2} can be used for oxidation of aldehydes and ketones.
Statement-II : Aqueous solution of EuSO_{4} is a strong reducing agent.
(1) Statement I is true, statement II is false
(2) Statement I is false, statement II is true
(3) Both Statement I and Statement II are false
(4) Both Statement I and Statement II are true

Sol. (4)
CeO_{2} can be used as oxidising agent like seO_{2}.
Similarly EuSO_{4} used as a reducing agent.
7. The major product of the following chemical reaction is:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} \xrightarrow[\text { 3) } \mathrm{Pd} / \mathrm{BaSO}_{4}, \mathrm{H}_{2}]{\begin{array}{l}
\text { 1) } \mathrm{H}_{3} \mathrm{O}^{+}, \Delta \\
\text { 2) } \mathrm{SOCl}_{2}
\end{array}} \text { ? }
$$

(1) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Sol. (2)

8. Complete combustion of 1.80 g of an oxygen containing compound $\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}\right)$ gave 2.64 g of CO_{2} and 1.08 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage of oxygen in the organic compound is:
(1) 63.53
(2) 53.33
(3) 51.63
(4) 50.33

Sol. (2)

$\mathrm{n}_{\mathrm{CO}_{2}}=\frac{2.64}{44}=0.06$
$\mathrm{n}_{\mathrm{c}}=0.06$
weight of carbon $=0.06 \times 12=0.72 \mathrm{gm}$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{1.08}{18}=0.06$
$\mathrm{n}_{\mathrm{H}}=0.06 \times 2=0.12$
weight of $\mathrm{H}=0.12 \mathrm{gm}$
\therefore Weight of oxygen in $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$
$=1.8-(0.72+0.12)$
$=0.96$ gram
$\%$ weight of oxygen $=\frac{0.96}{1.8} \times 100$

$$
=53.3 \%
$$

9. The correct statement about $\mathrm{B}_{2} \mathrm{H}_{6}$ is:
(1) All B-H-B angles are of 120°.
(2) Its fragment, BH_{3}, behaves as a Lewis base.
(3) Terminal $\mathrm{B}-\mathrm{H}$ bonds have less p-character when compared to bridging bonds.
(4) The two $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bonds are not of same length.

Sol. (3)

Terminal bond angle is greater than that of bridge bond angle
Bond angle \propto S-character

$$
\propto \frac{1}{\mathrm{p}-\text { character }}
$$

10. In which of the following pairs, the outer most electronic configuration will be the same?
(1) Fe^{2+} and Co^{+}
(2) Cr^{+}and Mn^{2+}
(3) Ni^{2+} and Cu^{+}
(4) V^{2+} and Cr^{+}

Sol. (2)
$\mathrm{Cr}^{+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
$\mathrm{Mn}^{2+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
11. Which statement is correct?
(1) Buna-S is a synthetic and linear thermosetting polymer
(2) Neoprene is addition copolymer used in plastic bucket manufacturing
(3) Synthesis of Buna-S needs nascent oxygen
(4) Buna-N is a natural polymer

Sol. (3)
Synthesis of Buna-S needs nascent oxygen.
12. Given below are two statements:

Statement-I : An allotrope of oxygen is an important intermediate in the formation of reducing smog.
Statement-II : Gases such as oxides of nitrogen and sulphur present in troposphere contribute to the formation of photochemical smog.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I and Statement II are true
(2) Statement I is true about Statement II is false
(3) Both Statement I and Statement II are false
(4) Statement I is false but Statement II is true

Sol. (3)

Reducing smog as is acts as reducing agent, the reducing character is due to presence of sulphur dioxide and carbon particles.
13. The plots of radial distribution functions for various orbitals of hydrogen atom against ' r ' are given below:
(A)

(B)

(C)

(D)

The correct plot for $3 s$ orbital is:
(1) D
(2) B
(3) A
(4) C

MOTİON JEE MAIN 2021

Sol. (1)

3s orbital
Number of radial nodes $=\mathrm{n}-\ell-1$
For 3 s orbital $\mathrm{n}=3 \quad \ell=0$
Number of radial nodes $=3-0-1=2$
It is correctly represented in graph of option D
14. Which of the glycosidic linkage galactose and glucose is present in lactose?
(1) C-1 of glucose and C-6 of galactose
(2) C-1 of galactose and C-4 of glucose
(3) $\mathrm{C}-1$ of glucose and $\mathrm{C}-4$ of galactose
(4) C-1 of galactose and C-6 of glucose

Sol. (2)

β-D-Galactose $\quad \beta$-D-Glucose
15. Which one of the following reactions will not form acetaldehyde?
(1)

(2)

(3)

(4)

Sol. (1)

निपिटर्स बैच का सर्वश्रेष्ठ परिणाम सिर्फ मोशन के साथ

16. Which of the following reaction/s will not give p-aminoazobenzene?

iii) Aniline
(B)

(C)

(1) B only
(2) A and B
(3) C only
(4) A only

Sol. (1)

(C)

17. The hybridization and magnetic nature of $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, respectively are:
(1) $d^{2} \mathrm{sp}^{3}$ and paramagnetic
(2) $s p^{3} d^{2}$ and paramagnetic
(3) $d^{2} s p^{3}$ and diamagnetic
(4) $s p^{3} d^{2}$ and diamagnetic

Sol. (1)

1. $\quad\left(\mathrm{Mn}(\mathrm{CN})_{6}\right)^{4-}$
$\mathrm{Mn}^{++}=3 \mathrm{~d}^{5}$
$\mu=\sqrt{3}$
hybridization $=d^{2} s p^{3}$

2. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ $\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5}$
$\mu=\sqrt{3}$
Hybridization $-d^{2} s^{3}$

MOTİON" JEE MAIN 2021

18. Identify A and B in the chemical reaction.

(1) $A=$

(2)

(3)

(4)

Sol. (4)

निपिटर्स बैच का सर्वश्रेष्ठ परिणाम सिर्फ मोशन के साथ

19. Compound(s) which will liberate carbon dioxide with sodium bicarbonate solution is/are:
$A=$

$C=$

(1) B and C only
(2) B only
(3) A and B only
(4) C only

Sol. (1)
Compounds which are more acidic then $\mathrm{H}_{2} \mathrm{CO}_{3}$, gives CO_{2} gas on reaction with NaHCO_{3}. Compound B i.e. Benzoic acid and compound C i.e. picric acid both are more acidic than $\mathrm{H}_{2} \mathrm{CO}_{3}$.
20. The solubility of AgCN in a buffer solution of $\mathrm{pH}=3$ is x . The value of x is:
[Assume: No cyano complex is formed; $\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCN})=2.2 \times 10^{-16}$ and $\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=6.2 \times 10^{-10}$]
(1) 0.625×10^{-6}
(2) 1.6×10^{-6}
(3) 2.2×10^{-16}
(4) 1.9×10^{-5}

Sol. (4)

Let solubility is x
$\mathrm{AgCN} \rightleftharpoons \underset{\mathrm{x}}{\rightleftharpoons \underset{\mathrm{x}}{+}+\mathrm{CN}^{-}} \quad \mathrm{K}_{\mathrm{sp}}=2.2 \times 10^{-16}$
$\mathrm{H}^{+}+\mathrm{CN}^{-} \rightleftharpoons \mathrm{HCN} \quad \mathrm{K}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{1}{6.2 \times 10^{-10}}$
$\mathrm{K}_{\mathrm{sp}} \times \frac{1}{\mathrm{~K}_{\mathrm{a}}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right] \times \frac{[\mathrm{HCN}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}$
$2.2 \times 10^{-16} \times \frac{1}{6.2 \times 10^{-10}}=\frac{[S][S]}{10^{-3}}$
$S^{2}=\frac{2.2}{6.2} \times 10^{-9}$
$S^{2}=3.55 \times 10^{-10}$
$S=\sqrt{3.55 \times 10^{-10}}$
$S=1.88 \times 10^{-5} \Rightarrow 1.9 \times 10^{-5}$

SECTION - B

1. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}_{(\mathrm{s})}$ with oxygen was run in a bomb calorimeter and $\Delta \mathrm{U}$ was found to be $-742.24 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The magnitude of $\Delta \mathrm{H}_{298}$ for the reaction
$\mathrm{NH}_{2} \mathrm{CN}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$ is \qquad kJ. (Rounded off to the nearest integer) [Assume ideal gases and $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]
Sol. 741 kJ/mol
$\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{ng}=(1+1)-\frac{3}{2}=\frac{1}{2}$

MOTION JEE MAIN 2021

$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ng} \mathrm{R} T$
$=-742.24+\frac{1}{2} \times \frac{8.314 \times 298}{1000}$
$=-742.24+1.24$
$=741 \mathrm{~kJ} / \mathrm{mol}$
2. In basic medium $\mathrm{CrO}_{4}{ }^{2-}$ oxidizes $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to form SO_{4}^{2-} and itself changes into $\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}$. The volume of $0.154 \mathrm{M} \mathrm{CrO}_{4}{ }^{2-}$ required to react with 40 mL of $0.25 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is \qquad mL . (Rounded-off to the nearest integer)

Sol. 173 mL

$17 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CrO}_{4}+3 \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow 6 \mathrm{SO}_{4}+8 \mathrm{Cr}(\mathrm{OH})_{4}^{-}+2 \mathrm{OH}^{-}$
Applying mole-mole analysis
$\frac{0.154 \times v}{8}=\frac{40 \times 0.25}{3}$
$V=173 \mathrm{~mL}$
3. For the reaction, $a A+b B \rightarrow c C+d D$, the plot of $\log k v s \frac{1}{T}$ is given below:

The temperature at which the rate constant of the reaction is $10^{-4} \mathrm{~s}^{-1}$ is \qquad K.
[Rounded off to the nearest integer)
[Given: The rate constant of the reaction is $10^{-5} \mathrm{~s}^{-1}$ at 500 K]

Sol. 526 K

$\log _{10} K=\log _{10} A-\frac{E_{a}}{2.303 R T}$
Slope $=\frac{E_{a}}{2.303 R}=-10000$
$\log _{10} \frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303 R} \times\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$\log _{10} \frac{10^{-4}}{10^{-5}}=10000 \times\left[\frac{1}{500}-\frac{1}{\mathrm{~T}}\right]$
$1=10000 \times\left[\frac{1}{500}-\frac{1}{\mathrm{~T}}\right]$
$\frac{1}{10000}=\frac{1}{500}-\frac{1}{\mathrm{~T}}$
$\frac{1}{T}=\frac{1}{500}-\frac{1}{10000}$
$\frac{1}{\mathrm{~T}}=\frac{20-1}{10000}=\frac{19}{10000}$
$T=\frac{10,000}{19} \Rightarrow 526 \mathrm{~K}$
4. 0.4 g mixture of $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and some inert impurities was first titrated with $\frac{\mathrm{N}}{10} \mathrm{HCl}$ using phenolphthalein as an indicator, 17.5 mL of HCl was required at the end point. After this methyl orange was added and titrated. 1.5 mL of same HCl was required for the next end point. The weight percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture is \qquad . (Rounded-off to the nearest integer)
Sol. 3\%
$1^{\text {st }}$ end point reaction
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{nf}=1$
$\mathrm{NaCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaHCO}_{3}$
$\mathrm{nf}=1$
Eq of HCl used $=\mathrm{n}_{\mathrm{NaOH}} \times 1+\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \times 1$
$17.5 \times \frac{1}{10} \times 10^{-3}=\mathrm{n}_{\mathrm{NaOH}}+\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$2^{\text {nd }}$ end point
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
$1.5 \times \frac{1}{10} \times 10^{-3}=n_{\mathrm{NaHCO}_{3}} \times 1=\mathrm{n}_{\mathrm{NaHCO}_{3}}$
$0.15 \mathrm{mmol}=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$0.15=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$\mathrm{W}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{0.15 \times 106 \times 10^{-3}}{0.5} \times 100 \times 10$
$=3 \times 106 \times 10^{-2}$
$=3 \times 1.06=3.18 \%$
5. The ionization enthalpy of Na^{+}formation from $\mathrm{Na}_{(\mathrm{g})}$ is $495.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, while the electron gain enthalpy of Br is $-325.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Given the lattice enthalpy of NaBr is $-728.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The energy for the formation of NaBr ionic solid is (-) \qquad $\times 10^{-1} \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Sol. 5576 kJ

$\mathrm{Na}(\mathrm{s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})$
$\Delta \mathrm{H}=495.8$
$\frac{1}{2} \mathrm{Br}_{2}(\ell)+\mathrm{e}^{-} \longrightarrow \mathrm{Br}^{-}(\mathrm{g})$
$\Delta H=325$
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Br}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaBr}(\mathrm{s})$
$\Delta \mathrm{H}=-728.4$
$\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{Br}_{2}(\ell) \longrightarrow \mathrm{NaBr}(\mathrm{s}) . \quad \Delta \mathrm{H}=$?
$\Delta \mathrm{H}=495.8-325-728.4$
$-557.6 \mathrm{~kJ}=-5576 \times 10^{-1} \mathrm{~kJ}$

MOTION JEE MAIN 2021

6. Consider the following chemical reaction.
$\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[\text { (2) } \mathrm{CO}+\mathrm{HCl} / \mathrm{AClCl} / 3]{\text { (1) }}$ Product
The number of sp^{2} hybridized carbon atom(s) present in the product is \qquad .
Sol. 7

All carbon atoms in benzaldehyde are sp^{2} hybridised
7. A car tyre is filled with nitrogen gas at 35 psi at $27^{\circ} \mathrm{C}$. It will burst if pressure exceeds 40 psi. The temperature in ${ }^{\circ} \mathrm{C}$ at which the car tyre will burst is \qquad . (Rounded-off to the nearest integer)
Sol. $\quad 69.85^{\circ} \mathrm{C} \simeq 70^{\circ} \mathrm{C}$
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$\frac{35}{300}=\frac{40}{\mathrm{~T}_{2}}$
$\mathrm{T}_{2}=\frac{40 \times 300}{35}$
$=342.86 \mathrm{~K}$
$=69.85^{\circ} \mathrm{C} \simeq 70^{\circ} \mathrm{C}$
8. Among the following, the number of halide(s) which is/are inert to hydrolysis is \qquad .
(A) BF_{3}
(B) SiCl_{4}
(C) PCl_{5}
(D) SF_{6}

Sol. 1

Due to crowding SF_{6} is not hydrolysed.
9. 1 molal aqueous solution of an electrolyte $A_{2} B_{3}$ is 60% ionised. The boiling point of the solution at 1 atm is \qquad K . (Rounded-off to the nearest integer)
[Given K_{b} for $\left(\mathrm{H}_{2} \mathrm{O}\right)=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]

Sol. 375 K

$\mathrm{A}_{2} \mathrm{~B}_{3} \longrightarrow 2 \mathrm{~A}^{+3}+3 \mathrm{~B}^{-2}$
No. of ions $=2+3=5$
$\mathrm{i}=1+(\mathrm{n}-1) \propto$
$=1+(5-1) \times 0.6$
$=1+4 \times 0.6=1+2.4=3.4$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m} \times \mathrm{i}$

$$
=0.52 \times 1 \times 3.4=1.768^{\circ} \mathrm{C}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}-\left[\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{H}_{2} \mathrm{O}}\right]_{\text {solution }}$
$1.768=\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}-100$
$\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}=101.768^{\circ} \mathrm{C}$
$=375 \mathrm{~K}$
10. Using the provided information in the following paper chromatogram:

Fig: Paper chromatography for compounds A and B the calculated R_{f} value of A \qquad $\times 10^{-1}$.
Sol. 4
$R_{f}=\frac{\text { Dis tan ce travelled by compound }}{\text { Dis tan ce travelled by solvent }}$
On chromatogram distance travelled by compound is $\rightarrow 2 \mathrm{~cm}$
Distance travelled by solvent $=5 \mathrm{~cm}$
So $R_{f}=\frac{2}{5}=4 \times 10^{-1}=0.4$

